HW01 - Chemistry Fundamentals

This is a preview of the draft version of the quiz

Started: Aug 8 at 4:45pm

Quiz Instructions

Homework 01 - Chemistry Fundamentals

| Question 1 |
| :--- | :--- |
| The measurement $4.7 \times 10^{-3} \mathrm{~m}$ could also be written as... |
| 4.7 Mm |
| 4.7 km |
| 4.7 nm |
| 4.7 mm |

Question 2

1 pts

The mole concept is important in chemistry because...it establishes a standard for reaction stoichiometry.it allows us to distinguish between elements and compounds.it provides a universally accepted standard for mass.it allows us to count atoms and molecules by weighing macroscopic amounts of material.

How many atoms of hydrogen are contained in 2 moles of methane $\left(\mathrm{CH}_{4}\right)$?

. 4 atoms
4.82×10^{24} atoms
1.20×10^{24} atoms

O 2.41×10^{24} atoms

Question 4

Which has the greatest number of hydrogen atoms?100 g of water100 g of a substance that is $2 \% \mathrm{H}$ by mass10^{20} hydrogen atoms20 g of hydrogen gas

Question 5

Consider the following UNBALANCED chemical equation:
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
What is the coefficient for $\mathrm{H}_{2} \mathrm{O}$ when the reaction is balanced using the smallest possible integers?

O

O 3241

| Question 6 |
| :--- | :--- |
| When aluminum metal is heated with manganese oxide, the following reaction occurs: |
| $\mathrm{Al}+\mathrm{MnO}_{2} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Mn}$ |
| Balance this equation. What is the sum of the coefficients of ALL species in the balanced chemical equation? |
| 10 |
| 7 |
| 15 |
| 12 |

Question 7

1 pts

When the equation
$\mathrm{PbS}+\mathrm{O}_{2} \longrightarrow \mathrm{PbO}+\mathrm{SO}_{2}$
is balanced, the coefficients are \qquad respectively.$1,2,1,1$$2,2,1,2$$1,2,3,3$$2,3,2,2$

Question 8

Consider the UNBALANCED reaction below.
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{NaOH} \longrightarrow \mathrm{Al}(\mathrm{OH})_{3}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
Balance this equation using the smallest possible integers. What is the sum of the coefficients in the balanced equation?

```
    O}1
```

```
        12
```

```
    14
```

```8
```

```6
```


Question 9

Which of the following has the greatest number of ATOMS?These all have the same number of atoms.3.05 moles of CH_{4}3.05 moles of water
3.05 moles of argon

Question 10

1 pts

If 100.0 grams of copper (Cu) completely reacts with 25.0 grams of oxygen, how much copper (II) oxide (CuO) will form from 140.0 grams of copper and excess oxygen? (Note: CuO is the only product of this reaction.)

O 175.0 g210.0 g
35.00 g
160.0 g

Question 11
1 pts

Consider the following reaction:
$4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
If 12.50 g of iron (III) oxide (rust) are produced from 8.74 g of iron, how much oxygen gas is needed for this reaction?3.76 g21.24 g7.55 g8.74 g

Question 12

Upon heating, potassium chlorate produces potassium chloride and oxygen.
$2 \mathrm{KClO}_{3} \longrightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
What mass of oxygen would be produced upon thermal decomposition of 25 g of potassium chlorate $\left(\mathrm{KClO}_{3}\right)$? The molecular weight (MW) of potassium chlorate is $122.5 \mathrm{~g} / \mathrm{mol}$.3.3 g4.9 g6.5 g

Question 13
1 pts

Consider the following reaction:
$\mathrm{CO}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}$
How much oxygen is required to convert 35 g of CO into CO_{2} ?10 g20 g

Question 14
1 pts

Consider the following reaction:
$\mathrm{N}_{2}+\mathrm{H}_{2} \longrightarrow \mathrm{NH}_{3}$
How many MOLECULES of NH_{3} can be produced from the reaction of 74.2 g of N_{2} and 14.0 moles of H_{2} ?4.45×10^{24} molecules1.26×10^{25} molecules5.62×10^{24} molecules3.19×10^{24} molecules

Question 15

Consider the following reaction:
$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
39.7 grams of $\mathrm{C}_{6} \mathrm{H}_{6}$ are allowed to react with 105.7 g of O_{2}. How much CO_{2} will be produced by this reaction?134.4 g145.3 g22.4 g116.3 g

